Name \qquad

1) Given the basis $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ and $\vec{x}_{S}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{S}$, find a formula for $[\vec{x}]_{B} \cdot(10$ points $)$
2) Given the bases $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 13\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, find a formula for the change of basis matrix that converts vectors from basis B_{1} into vectors from basis B_{2}. (10 points)
3) Find the determinant of the matrix below. (15 points)
$\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -4 \\ 3 & 4 & 0 & 2\end{array}\right]$
4) Given the linear transformation $T: \mathbb{R}_{S}^{2} \rightarrow \mathbb{R}_{S}^{2}$ given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{S}\right)=\left[\begin{array}{c}3 x_{2} \\ x_{1}+x_{2}\end{array}\right]_{S}$ and the bases below, find a formula for $\left[T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]_{B_{1}}\right)\right]_{B_{2}} .(10$ points $)$

$$
\begin{aligned}
& B_{1}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
{[} \\
3
\end{array}\right]\right\} \\
& B_{2}=\left\{\left[\begin{array}{l}
4 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

5) Answer the following questions. (3 points each)
A) Let A be a 3×3 matrix and assume that it has rank 2 . How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
B) Let A be a 3×4 matrix and assume that the corresponding linear transformation T is not onto. What is the minimum dimension of the null space of A ?
C) Let A be a 3×7 matrix. Assume that the dimension of the row space is 3 . What is the dimension of the column space?
D) Consider a system of 5 equations in 3 variables. Assume there are infinitely many solutions. If A is the matrix representing this system, what are the possible values for the rank of A ?
E) Let A be a 6×6 matrix and T the corresponding linear transformation. If $\operatorname{dim}(\operatorname{ker}(T))=2$, what is the rank of A ?
6) Find the null space of the matrix below. (10 points)

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4
\end{array}\right]
$$

7) Find the product below. (5 points)

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 2 & 4 & 3 \\
2 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
0 & 2 & 1 & 3 & 2 \\
6 & 5 & 2 & 7 & 9
\end{array}\right]
$$

You may be interested in the information below for the questions on this page.

$$
\left[\begin{array}{llll}
1 & 4 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 3 & 1 & 2
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 0 & -\frac{4}{3} & \frac{7}{3} \\
0 & 1 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

8) Are the vectors linearly dependent or linearly independent? Why? (5 points)

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]\right\}
$$

9) Can $\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right]$ be written as a unique linear combination of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$? Why or why not? (5 points)
10) Find a basis for the vector space below. (5 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]\right\}\right)
$$

11) Given the information below regarding the linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, find the diagram that illustrates them as well as $T \circ S$. (10 points)

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1} \\
3 x_{2} \\
x_{1}+x_{2}
\end{array}\right] \quad S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2} \\
4 x_{1}+x_{3}
\end{array}\right]
$$

